Časové řady (1 den, Praha)

2 990  bez DPH

Termín: 7. 9. 2018

Kurz je zaměřen na predikci časových řad. V první části se účastníci seznámí se standardními postupy při modelování a predikci časových řad a vyzkouší si jednoduché postupy na ukázkových příkladech. V další části budou vysvětleny metody strojového učení aplikovatelné při predikci časových řad. Účastníci si vyzkouší sestavit a natrénovat model schopný predikovat složitější časovou řadu z historických dat a ověří schopnost modelu predikovat budoucnost.

Počet volných míst: 4

Qty:
Kategorie:

Prerekvizity

  • Základní znalost programování v Pythonu
  • Středoškolské znalosti lineární algebry, matematické analýzy a teorie pravděpodobnosti. Bude předpokládáno základní porozumění pojmům jako vektor, matice, vektorový prostor, pravděpodobnost, podmíněná pravděpodobnost, nezávislost náhodných jevů a znalost násobení matic a derivace funkcí.
  • Vlastní laptop s předinstalovaným Dockerem.
  • Znalosti strojového učení na úrovni kurzu Úvod do strojového učení.

Co si účastník odnese

Kurz je zaměřen na predikci časových řad. V první části se účastníci seznámí se standardními postupy při modelování a predikci časových řad a vyzkouší si jednoduché postupy na ukázkových příkladech. V další části budou vysvětleny metody strojového učení aplikovatelné při predikci časových řad. Účastníci si vyzkouší sestavit a natrénovat model schopný predikovat složitější časovou řadu z historických dat a ověří schopnost modelu predikovat budoucnost.

Program

  • Úvod do teorie časových řad
  • Vybrané postupy modelovaní časových řad (časová a frekvenční doména, spektrální analýza, autokorelace, modely časových řad (ARIMA apod.)
  • Praktický příklad (pandas, základní charakteristiky, jednoduchá predikce)
  • Metody strojového učení pro časové řady (state space metody, hidden markov model, kalman filter, dopředné neuronové sítě, rekurentní neuronové sítě, LSTM)
  • Praktické příklady ilustrující sílu strojového učení (příprava trénovací množiny dle typu úlohy a zvoleného modelu, trénovaní a evaluace)
  • Komplexní scénář predikce časové řady pomocí rekurentní sítě (predikce teploty z vícerozměných vstupních dat: sběr a příprava trénovací množiny, trénování a validace modelu, predikování pomocí naučené sítě)